Pulse Width Modulation (PWM) Lab

BMES54L - Fall 2025 - Palmeri
Dr. Mark Palmeri, M.D., Ph.D.
2025-08-25

Table of contents

Learning Objectives
Git Best Practices e
Firmware Expectations
Steady-State PWM Output
Firmware Functional Specifications 0L,
Testing o
Commit-n-Merge Steady-State PWM
Sinusoidal Modulation of PWM Output
Firmware Functional Specifications
Testing o e
Commit-n-Merge Modulated PWM
How to Ask for Help

R R W W W WD N

Learning Objectives

¢ Implement a steady-state PWM output to control “intensity” over a finite dynamic range.
¢ Implement a temporally-modulated PWM output.

Git Best Practices

o Use best practices for version control (branching, commit messages, etc.).

¢ Do all development on a dedicated branch that is merged into main once it is functional.

o Commits should be very specific to the changes/additions you are making to your code.
This will help you and others understand what you did and why you did it.

e On a given development branch, try to implement one small piece of functionality at a
time, commit it, and then move on to the next piece of functionality.

| Important

You do not want one, monolithic git commit right before you submit your project.

Firmware Expectations
o All firmware should be written using the State Machine Framework.

e Choose your states for each part as a firmware engineer would, using what you have
learned so far this semester.

o Timers, work queues, callbacks, and interrupts should be used as appropriate.

e All good coding practices developed this semester should be followed.

e Use logging to display state information and other relevant information, warnings, and
errors. Debugging log messages can remain in the code, but the logging level should be
submitted at the INF level.

e Include a state diagram in your repository (state_diagram.png) using UML
(state_diagram.puml) or some equivalent.

@ Tip

Do all development for this lab on section-specific development branches.

Steady-State PWM Qutput

Do this section on a development branch called pwm-steady-state.

Firmware Functional Specifications
o Using the ADC lab functionality to read a DC voltage on AINO, map this read DC voltage
to scale the maximum brightness of LED2 using a PWM output.

— For example:
« If AINO = 0 V, then LED2 should be off (0% duty cycle).

« If AINO = 1.5 V, then LED2 should be at 50% brightness (50% duty cycle).
« If AINO = 3 V, then LED2 should be at maximum brightness (100% duty cycle).

o Update your state diagram to include the new functionality.

Testing

e Quantify the linearity of the maximum brightness of LED2 as a function of AINO voltage
ranging from 0-3 V.

e Present your data and analysis in the technical report Jupyter notebook called
testing/testing_pwm.ipynb.

1 Note

Remember that LEDs on the DK are ACTIVE_LOW.

Commit-n-Merge Steady-State PWM

e Merge your completed pwm-steady-state branch into your main branch using a Merge
Request on Gitlab.

e Create an annotated tag of your main branch with all part of this lab merged in called
v3.0.0.

Sinusoidal Modulation of PWM Output

Do this section on a development branch called pwm-sinusoid, branched off of main after
pwm-steady-state was merged.

Firmware Functional Specifications

e Modulate the brighness of LED3 to match samping a 2-second, 10 Hz differential sinu-
soidal voltage on AIN1 and AIN2 after pressing BUTTON2.

e LED3 should have its brightness modulated with as little latency as possible with respect
to the input voltage.

@ Tip

The blocking nature of a syncronous buffered acquisition scheme is not ameable to real-
time modulation of the PWM output. Consider using the aynchronous ADC sampling
approach with a callback to update the PWM duty cycle after each sampling event or a
timer-based, single-sample acqusition approach.

e Set the minumum and maximum sinusoidal brightnesses to be PWM duty cycles of 0
and 100%, respectively.
o Update your state diagram to include the new functionality.

Testing

¢ Using the oscilloscope, measure your input sinusoidal signal on AIN1 and AIN2 and the
output PWM signal on LED3 at the same time.

@ Tip

You will need to low pass filter your modulated PWM output to see a smooth sinusoidal
output. You can do this using the LPF Math mode on the oscilloscope with an appro-
priate cutoff frequency (relative to the frequency of the input sinusoid) and sampling
window (capturing multiple cycles of the sinusoid).

e Save this acquired oscilloscope data to a CSV file using a USB memory stick.

¢ In your Jupyter notebook, in a new section, plot the input and output signals.

e Calculate the frequency of your PWM signal and the phase difference between the PWM
sinusoid and your input signal.

e Present your data and analysis in your Jupyter notebook.

 Discuss the accuracy of your PWM frequency and the latency (phase lag) of your system
and how you could improve it in the future.

Commit-n-Merge Modulated PWM

e Merge your completed pwm-sinusoid branch into your main branch using a Merge Re-
quest on Gitlab.

e Create an annotated tag of your main branch with all part of this lab merged in called
v3.1.0.

e Create an Issue for Dr. Palmeri to review this PWM lab, assigning it the Review label.

How to Ask for Help

1. If you have a general / non-coding question, you should ask your TAs / Dr. Palmeri on
Ed to allow any of them to respond in a timely manner.

2. Push you code to your GitLab repository, ideally with your active development on a
non-main branch.

3. Create an Issue in your repository.

https://docs.gitlab.com/ee/user/project/issues/

Add as much detail as possible as to your problem, and add links to specific lines /
section of code when possible.

Assign the label “Bug” or “Question”, as appropriate.

Be sure to specify what branch you are working on.

Assign the Issue to one of the TAs.

If your TA cannot solve your Issue, they can escalate the Issue to Dr. Palmeri.

4. You will get a response to your Issue, and maybe a new branch of code will be pushed
to help you with some example syntax that you can use git diff to visualize.

	Learning Objectives
	Git Best Practices
	Firmware Expectations
	Steady-State PWM Output
	Firmware Functional Specifications
	Testing
	Commit-n-Merge Steady-State PWM

	Sinusoidal Modulation of PWM Output
	Firmware Functional Specifications
	Testing
	Commit-n-Merge Modulated PWM

	How to Ask for Help

