
Zephyr: Devicetree, GPIO, ISR and Callbacks
Lab

BME554L - Fall 2025 - Palmeri

Dr. Mark Palmeri, M.D., Ph.D.

Invalid Date

Table of contents

Overview . 1
Git Version Control . 1
Repository Setup . 2
Kernel Configuration . 2
Devicetree . 2
Firmware . 3
State Diagram . 5
Notes & Tips . 5
How do I ask for help? . 5
What to Submit & Grading . 6

Overview

This week we will start programming the firmware that will be controlling your nRF52833DK.
We will be using buttons to trigger device events and LEDs will be used to visualize output
activity for the device. While LEDs might seem underwhelming, they are a universal way
to represent how digital ouput signals could be used to control other devices (e.g., motors,
actuators, etc.).

Git Version Control

• Use best practices for version control (branching, commit messages, etc.).
• Do all development on a dedicated branch that is merged into main once it is functional.

1

• Commits should be very specific to the changes/additions you are making to your code.
This will help you and others understand what you did and why you did it.

• On a given development branch, try to implement one small piece of functionality at a
time, commit it, and then move on to the next piece of functionality.

Important

You do not want one, monolithic git commit right before you submit your project.

Repository Setup

1. Fork the lab template repository into your personal GitLab user space.
2. Add Dr. Palmeri (mlp6) as a Maintainer of your project ASAP. This will allow him to

add your TAs and some project labels.
3. Clone your forked project to your local laptop.

Kernel Configuration

Take note of kernel configurations enabled in prj.conf:

• CONFIG_GPIO=y
• CONFIG_LOG=y

Devicetree

• We have introduced the concept of the Devicetree (DT) for the nRF52833DK. The de-
velopment kit has a preconfigured DT (nrf52833dk_nrf52833.dts), which is selected
when we create a board configuration (the present selected in CMakePresents.json).

• To make changes or additions to this DT, we will create a DT overlay file that will be com-
piled into the firmware. The default name of this file is nrf52833dk_nrf52833.overlay
and it is located in the boards/ directory.

• The nRF52833DK has 4 integrated LEDs. Edit the DT overlay file for your project to
create alias for 4 LEDs on the following pins (all 4 of which are the integrated LEDs),
which will then be associated with the specified firmware GPIO pin struct names:

2

https://gitlab.oit.duke.edu/EmbeddedMedicalDevices/zephyr-gpio-isr-callbacks-lab
prj.conf

Firmware
gpio_dt_spec Struct
Name DT Alias

DT
Default
Node
Name

Physical
GPIO Pin

DK Part
Label

heartbeat_led heartbeat led0 P0.13 LED1
iv_pump_led ivpump led1 P0.14 LED2
buzzer_led buzzer led2 P0.15 LED3
error_led error led3 P0.16 LED4

• The nRF52833DK also has 4 integrated buttons. Edit the DT overlay file for your project
to create aliases for these 4 buttons that are the same as their default DTS node names:

Firmware
gpio_dt_spec Struct
Name DT Alias

DT
Default
Node
Name

Physical
GPIO
Pin

DK Part
Label

sleep_button sleepbutton button0 P0.11 Button 1
freq_up_button frequpbutton button1 P0.12 Button 2
freq_down_button freqdownbutton button2 P0.24 Button 3
reset_button resetbutton button3 P0.25 Button 4

Source: https://docs.nordicsemi.com/bundle/ug_nrf52833_dk/page/UG/dk/hw_buttons_leds.html

Firmware

Implement the following firmware functionality as a state machine (switch/case):

• Check that the GPIO0 interface is ready.
• Initialize all LED output pins as GPIO_OUTPUT_ACTIVE or GPIO_OUTPUT_INACTIVE, as

dictated by the functional specifications below. Note that ACTIVE for the LEDs on this
DK corresponds to driving them LOW.

• Be sure to capture all function exit codes and have conditional statements to capture
any returned error codes.

Implement the following control logic:

• The heartbeat LED blinks at a fixed 1 Hz while main() is being executed. Issue a
LOG_INF() statement each time the heartbeat LED is toggled.

• The 2 “action” LEDs (buzzer_led and iv_pump_led) blink out of phase with one
another at 2 Hz by default.

3

• This 2 Hz default blink frequency should be defined using a preprocessor macro:
#define LED_BLINK_FREQ_HZ 2.

• Issue a LOG_INF() statement each time the “action” LEDs are toggled.
• freq_up_button increases the blink frequency of the “action” LEDs by 1 Hz each time

it is pressed.
• This incremental increase in blink frequency should be defined by the preprocessor

macro: #define FREQ_UP_INC_HZ 1.

• Issue a descriptive LOG_INF() statement each time this button is pressed, which indicates
the new blink frequency.

• freq_down_button decreases the blink frequency of the “action” LEDs by 1 Hz each
time it is pressed.

• This incremental increase in blink frequency should be defined by the preprocessor
macro: #define FREQ_DOWN_INC_HZ 1.

• Issue a descriptive LOG_INF() statement each time this button is pressed, which indicates
the new blink frequency.

• If the blink frequency for the “action” LEDs is < 1 Hz or > 5 Hz, then:
• The “action” LEDs should both be off, and
• The error LED is continuously illuminated.

• Issue a descriptive LOG_ERR() statement.
• The heartbeat LED should continue to blink at 1 Hz.
• freq_up_button, freq_down_button, and sleep_button should be disabled (interrupts

disabled).
• Define each of these min/max limits using preprocessor macros (you can choose appro-

priate names).
• The only way to exit the “error state” is to press the reset button.
• Pressing the reset button resets the “action” LEDs to blink at their default 2 Hz rate,

out of phase with one another, and re-enables the freq_up_button, freq_down_button,
and sleep_button.

• The reset_button can be pressed from any state and resets the device back to the
default state.

• A descriptive LOG_INF() statement should be issued each time the reset button is
pressed.

• At any point in time when the “action” LEDs are blinking (i.e., not the error state), if
the sleep_button is pressed:

– The current blink frequency for the “action” LEDs is stored,
– Both “action” LEDs are turned off,
– The heartbeat LED continues to blink,

4

– A descriptive LOG_INF() statement is issued,
– The “sleep state” can be exited by:
– Pressing the sleep button again, at which time the device returns to blinking the

“action” LEDs at the same frequency and relative phase before being put to sleep.
Relative phase means the appropriate relative timing between the different “action”
LEDs.

– Pressing the reset_button, at which time the device returns to blinking the “ac-
tion” LEDs at their default 2 Hz rate, out of phase with one another.

State Diagram

1. Create a state diagram of your firmware using PlantUML, or your diagraming program
of choice.

2. Include a PNG of your block diagram in your git repository called state_diagram.png.

Notes & Tips

• You may want to make your state diagram before writing any code.
• Do not use k_msleep() in your code to control LED blink timing.

– Sleep is blocking and paralyzes a single-threaded application.
∗ Instead, have your main while loop run as fast as possible and use the

k_uptime_get() function to determine when to toggle the LEDs.

∗ Spoiler alert: We will be system kernel timers / threads to control the LED
blink timing in the next lab.

• Consider using a struct for each LED to bookkeep the LED state, phase, blink frequency,
etc.

How do I ask for help?

1. If you have a general / non-coding question, you should ask your TAs / Dr. Palmeri on
Ed to allow any of them to respond in a timely manner.

2. Push you code to your GitLab repository, ideally with your active development on a
non-main branch.

3. Create an Issue in your repository.

• Add as much detail as possible as to your problem, and add links to specific lines /
section of code when possible.

• Assign the label “Bug” or “Question”, as appropriate.
• Be sure to specify what branch you are working on.

5

https://plantuml.com/
https://docs.gitlab.com/ee/user/project/issues/

• Assign the Issue to one of the TAs.
• If your TA cannot solve your Issue, they can escalate the Issue to Dr. Palmeri.

4. You will get a response to your Issue, and maybe a new branch of code will be pushed
to help you with some example syntax that you can use git diff to visualize.

What to Submit & Grading

• Make sure you are committing as you develop your code, and have all of those commits
pushed to GitLab (i.e., do not “squash” them).

• Make sure all of the CI pipelines are passing.
• Create and annotated tag called v1.0.0 at the commit that represents your completed

lab.
• Push your final repository and the annotated tag to GitLab.
• Create an Issue assigned to Dr. Palmeri titled v1.0.0 ready for feedback and assign

it the Label Review.
• You do not need to upload anything to the Gradescope assignment; some-

one on the teaching team will upload your tagged code to the Gradescope
assignment for you.

• Grading feedback will be given on code:

– Functionality
– Efficieny of code logic
– “Readability”

∗ “Readability” does not mean a lot of verbose comments
∗ “Readability” means that the structure of the code, the naming of variables,

etc. convey meaning and logical flow.

6

	Overview
	Git Version Control
	Repository Setup
	Kernel Configuration
	Devicetree
	Firmware
	State Diagram
	Notes & Tips
	How do I ask for help?
	What to Submit & Grading

