
ECG & Temperature Sensor with BLE Lab
BME554L - Fall 2025 - Palmeri

Dr. Mark Palmeri, M.D., Ph.D.

2025-06-24

Table of contents

Git Version Control . 1
Best Coding Practices . 2
Firmware Functional Specifications . 2
BLE Server (Mobile App) . 3
State Diagram . 4
Testing & Verification . 4
How to Generate an ECG Signal . 4
Grading . 4
How to Ask for Help . 5
What to Submit . 5
Resources . 5

Heart Rate Service (GATT) . 5

• Fork this repository to your userspace.
• Add Dr. Palmeri as a Maintainer.
• Questions should be asked exclusively through GitLab Issues.

Git Version Control

• Use best practices for version control (branching, commit messages, etc.).
• Do all development on a dedicated branch that is merged into main once it is functional.
• Commits should be very specific to the changes/additions you are making to your code.

This will help you and others understand what you did and why you did it.

• On a given development branch, try to implement one small piece of functionality at a
time, commit it, and then move on to the next piece of functionality.

1

Important

You do not want one, monolithic git commit right before you submit your project.

Best Coding Practices

• Use best coding practices throughout the development of your firmware.
• Functions should be short and do one thing. They should return an exit code that is

checked in the calling function, indicating success or failure.
• MACROS! Avoid hard-coded values in your code.
• Use structs to organize related data.
• Use libraries for code that is self-contained.
• Use the LOGGING module to log errors, warnings, information and debug messages.
• You should not have any compiler/build warnings. The CI script will build against

v2.9.0 of the Zephyr SDK.

Firmware Functional Specifications

• Write all firmware using the state machine framework.

– Do all device initialization in an INIT state.
– Have an IDLE state when the device isn’t making any measurements.
– Have an ERROR state if any error exit codes are returned from any functions.

∗ All 4 LEDs should blink at a 50% duty cycle (ON:OFF time), in-phase with each
other, in the ERROR state.

∗ An error condition should post an error-related event that causes the device to
enter the ERROR state.

∗ The error code should specify the error condition that caused the device to
enter the ERROR state. For example, you may choose to have a bit array that
can capture multiple error conditions.

∗ A BLE notification should be sent with the error code (see BLE custom ser-
vice/characteristic below).

– Implement states of your choosing for the following measurements, calculations and
BLE communications.

• Have a heartbeat LED0 that blinks every 1 second with a 50% duty cycle (ON:OFF time)
in all states.

• Implement functionality to measure a battery voltage (0-3.0 V) using AIN0:

1. When the device first powers on, and then
2. Every 1 minute thereafter, but only when in the IDLE state.

2

3. You won’t actually be connecting a battery to your device; you can use a power
support or another voltage source to input a voltage to AIN0 to simulate a battery
level.

• Have the brightness of LED1 linearly modulated by the percentage of the battery level.
• Implement functionality to make two measurements after pressing BUTTON1:

1. Read temperature with your MCP9808 sensor (in degrees Celsius).
2. Calculate the average heart rate (40-200 BPM) using 25-30 seconds of an ECG signal

(ranging from -500 - 500 mV, note this is bipolar) from the function generator (see
video on how to setup the function generator to output an ECG signal).

• Pressing BUTTON1 during the measurements should post an error and go to the ERROR
state.

• Blink LED2 with a 25% duty cycle (ON:OFF time) at the average heart rate after the
measurements are complete.

• Have Bluetooth notifications after the measurements are complete and data have been
processed, using the BLE services and characteristics described below.

– Configure the DIS (Device Information Service) to report the device model as
your Team Name (come up with something fun).

– Set the BAS (Battery Service) to report the battery level of your device. (This
isn’t actually a battery level, but we’re using the AIN0 measurement as a surrogate
for a battery level.)

– Set the Heart Rate Service to report the average heart rate. (See Resources
section below.)

– Setup a custom service with the following custom characterisitics:
∗ Temperature for the I2C temperature sensor data in degrees Celcius.
∗ Error Code for the error code that caused the device to enter the ERROR state.

• BUTTON2 should clear (turn off) a blinking LED2, and if LED2 is not blinking because a
measurement hasn’t been taken, then it should log a warning (LOG_WRN()) as to why it
appears nothing happened.

• BUTTON3 should be used to reset the device from the ERROR state and return to the IDLE
state.

• Use timers, kernel events, work queues, threads and any other Zephyr RTOS features as
needed to implement the above functionality.

BLE Server (Mobile App)

• Your device can connect via BLE to a mobile app called nRF Connect.

• This app can be used to read the services and characteristics that your device is adver-
tising.

3

https://www.adafruit.com/product/1782
https://www.nordicsemi.com/Products/Development-tools/nrf-connect-for-mobile

State Diagram

• Generate a detailed state diagram that all states, events and actions for your firmware.

• A starter diagram is provided in the state_diagram.puml file, along with its rendering
below.

• You should add states, events and actions as needed to fully describe the functionality
of your firmware.

Figure 1: State Diagram

Testing & Verification

Complete the testing analysis described in testing/final_project.ipynb to verify the accuracy
of your firmware.

How to Generate an ECG Signal

• WaveStation 2012 AWG
• Digilent Waveforms Script

Grading

• This final project is worth 75% of your grade. Absolutely no late submissions will be
accepted.

• Git version control will be graded based on best practices.
• Firmware will be graded based on all best practices taught throughout the semester.
• Code organization and coding best practices will be graded.
• State diagram will be graded based on completeness, accuracy and ease of interpretation.
• Testing and analysis technical report will be graded based on presentation, completeness,

and accuracy.

4

testing/final_project.ipynb
https://youtu.be/pQYMHtzReZ8?si=oKQQXotuLZJn3cD0
testing/digilent-ecg-script.txt

How to Ask for Help

1. If you have a general / non-coding question, you should ask your TAs / Dr. Palmeri on
Ed to allow any of them to respond in a timely manner.

2. Push you code to your GitLab repository, ideally with your active development on a
non-main branch.

3. Create an Issue in your repository.

• Add as much detail as possible as to your problem, and add links to specific lines /
section of code when possible.

• Assign the label “Bug” or “Question”, as appropriate.
• Be sure to specify what branch you are working on.
• Assign the Issue to one of the TAs.
• If your TA cannot solve your Issue, they can escalate the Issue to Dr. Palmeri.

4. You will get a response to your Issue, and maybe a new branch of code will be pushed
to help you with some example syntax that you can use git diff to visualize.

What to Submit

• Make sure that all of your branches have been merged into the main branch.
• Create an annotated tag called v1.0.0 to mark the commit that you want to be graded.

– If you fix any bugs after creating this tag, you can create another tag called v1.0.1,
etc.

– Your latest tag will be the one that is graded up until the final due date/time of
the project.

• Create an Issue in your repository with the title “Final Project Submission”, and assign
it to Dr. Palmeri.

• All repositories will be cloned at the due date/time for grading. Absolutely
no changes will be accepted after this time.

Resources

Heart Rate Service (GATT)

• BLE Sample: Peripheral Heartrate
• Zephyr Docs: BT Heartrate Service

5

https://docs.gitlab.com/ee/user/project/issues/
https://github.com/zephyrproject-rtos/zephyr/tree/main/samples/bluetooth/peripheral_hr
https://docs.zephyrproject.org/latest/doxygen/html/group__bt__hrs.html

	Git Version Control
	Best Coding Practices
	Firmware Functional Specifications
	BLE Server (Mobile App)
	State Diagram
	Testing & Verification
	How to Generate an ECG Signal
	Grading
	How to Ask for Help
	What to Submit
	Resources
	Heart Rate Service (GATT)

