C Programming Lab

BMES54L - Fall 2025 - Palmeri
Dr. Mark Palmeri, M.D., Ph.D.
2025-06-20

Table of contents

Prelab e
Objectives o e e
Zephyr Application Git Repository Overview
Things To Do« . o e
Git Best Practiceso
Fork / Clone / Build / Flash / View Serial Output
Modify the Zephyr Application (DataTypes / Typecasting / Formatted Printing)
Library Refactor
Push Everything to GitLab & Create an Issue to Notify Dr. Palmeri
Gradescopeo e
How to Ask for Help e

R R R WO NN NN

Prelab

e Complete Nordic DevAcademy: Lesson 3 — Elements of an nRF Connect SDK application
e Complete Nordic DevAcademy: Lesson 4 — Printing messages to console and logging
o Review Debugging resource.

Objectives

e Introduction to C Programming

¢ Building Zephyr application

o Flashing Zephyr application

e Viewing serial output from Zephyr application running on your nrf52833DK
e Debugging Zephyr applications in VS Code

https://academy.nordicsemi.com/courses/nrf-connect-sdk-fundamentals/lessons/lesson-3-elements-of-an-nrf-connect-sdk-application/
https://academy.nordicsemi.com/courses/nrf-connect-sdk-fundamentals/lessons/lesson-3-printing-messages-to-console-and-logging/
../resources/debugging.qmd

Zephyr Application Git Repository Overview

e src/main.c - main application code

o .gitingore - ignore files that are not needed in the git repository
e CMakeLists.txt - build system configuration file

e prj.conf - Zephyr configuration file

e README.md - this file

o CMakePresets. json - CMake presets file (build configuration)

o .gitlab-ci.yml - GitLab CI configuration file

Things To Do
Git Best Practices

o Use best practices for version control (branching, commit messages, etc.).

e Do all development on a dedicated branch that is merged into main once it is functional.

o Commits should be very specific to the changes/additions you are making to your code.
This will help you and others understand what you did and why you did it.

e On a given development branch, try to implement one small piece of functionality at a
time, commit it, and then move on to the next piece of functionality.

! Important

You do not want one, monolithic git commit right before you submit your project.

Fork / Clone / Build / Flash / View Serial Output

o Fork the C Programing lab repository on Duke’s GitLab server: https://gitlab.oit.duke.
edu/kits/BME-554L-001-F25/c-programming-lab

e Add Dr. Palmeri (mlp6) as a Maintainer in your forked repository.

¢ Clone your forked repository to your local machine.

o Build the Zephyr application “as is” (review DevAcademy: Lesson 1).

o Flash the Zephyr application to your development kit.

— Connect the VCOM port on the nrf52833DK to your computer (using Connected
Devices and the plug icon)
— Look at the serial output in the VS Code Terminal

https://gitlab.oit.duke.edu/kits/BME-554L-001-F25/c-programming-lab
https://gitlab.oit.duke.edu/kits/BME-554L-001-F25/c-programming-lab
https://academy.nordicsemi.com/courses/nrf-connect-sdk-fundamentals/lessons/lesson-1-nrf-connect-sdk-introduction/

Modify the Zephyr Application (DataTypes / Typecasting / Formatted Printing)

o Inspect the code to see how variables a, b and ¢ are declared and initialized.
o Flash the existing code and note the terminal output:

2 {u1nt“)
3 (uilnt8 t)

0.000000 (float)
LOSE! !

¢ On a development branch called fix_division, without changing the declared datatypes
of a, b, or c, correct the code so that c is output in the terminal:

2 (u1nt“)
3 (uilnt8 t)

0. 6@66? (float)
WIN!

e Push the fix_division branch to your GitLab repository.

e Create a Merge Request to merge the fix_division branch into your main branch.

o Make sure the GitLab CI pipeline is successful before merging the fix_division branch
into main. If it isn’t passing, fix the problem locally on the same branch and push the
changes to GitLab.

¢ Pull your updated main branch to your local machine.

¢ Create an annotated tag for the merged commit on main with the fixed division named
v1.0.0.

e Push this annotated tag to your GitLab repository.

@ Tip

Note that the CI pipelines running on the GitLab server can take a while to complete.
Do not rely on them for immediate development feedback, but rather as a final check
before merging code into main.

Library Refactor

e On another development branch on your local machine called refactor_library,
refactor the code to put the divide_numbers() function into a library called
my_math_functions.h.

¢ Once you have your code working with this library, locally merge the refactor_library
branch into main.

e Create an annotated tag for the merged commit on main with the refactored library
named v1.1.0.

o Push the new commit(s) and annotated tag to your GitLab repository. Remember, this
will need to be done with two commands, git push and git push --tags.

Push Everything to GitLab & Create an Issue to Notify Dr. Palmeri

e Make sure all of your commits are pushed to your main branch, along with both annotated
tags.

¢ Confirm that the GitLab CI pipeline is successful.

o Create an Issue titled C Programming Lab Complete and assign it to Dr. Palmeri (m1p6).

Gradescope

Complete the Gradescope assignment for this lab that is a few simple tasks:

1. Confirm that you created the Issue above
2. Confirm that you completed both of the Nordic DevAcademy lessons
3. Upload a screenshot of your CI pipeline jobs passing

How to Ask for Help

1. If you have a general / non-coding question, you should ask your TAs / Dr. Palmeri on
Ed to allow any of them to respond in a timely manner.

2. Push you code to your GitLab repository, ideally with your active development on a
non-main branch.

3. Create an Issue in your repository.

o Add as much detail as possible as to your problem, and add links to specific lines /
section of code when possible.

e Assign the label “Bug” or “Question”, as appropriate.

e Be sure to specify what branch you are working on.

e Assign the Issue to one of the TAs.

e If your TA cannot solve your Issue, they can escalate the Issue to Dr. Palmeri.

https://docs.gitlab.com/ee/user/project/issues/

4. You will get a response to your Issue, and maybe a new branch of code will be pushed
to help you with some example syntax that you can use git diff to visualize.

	Prelab
	Objectives
	Zephyr Application Git Repository Overview
	Things To Do
	Git Best Practices
	Fork / Clone / Build / Flash / View Serial Output
	Modify the Zephyr Application (DataTypes / Typecasting / Formatted Printing)

	Library Refactor
	Push Everything to GitLab & Create an Issue to Notify Dr. Palmeri
	Gradescope
	How to Ask for Help

